氙气对新生儿缺氧缺血性脑病的神经保护作用及其可能机制 中华医学会围产医学分会
- 极地挑战
- 2025-10-04 05:39:45
- 8780
参考文献
[1] Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020,120(2):277-288. DOI: 10.1007/s13760-020-01308-3.
[2] Huang J, U KP, Yang F, et al. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage[J]. Theranostics, 2022,12(1):143-166. DOI: 10.7150/thno.57234.
[3] Thayyil S, Pant S, Montaldo P, et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh[J]. Lancet Glob Health, 2021,9(9):e1273-e1285. DOI: 10.1016/S2214-109X(21)00264-3.
[4] 孙祎璠, 蔡成. 新生儿缺氧缺血性脑病治疗研究进展[J].中华实用儿科临床杂志,2021,36(8):631-634. DOI: 10.3760/cma.j.cn101070-20200207-00126.
Sun YF, Cai C.Research progress of treatment for neonatal hypoxic ischemic encephalopathy[J].Chin J Appl Clin Pediatr,2021,36(8):631-634. DOI: 10.3760/cma.j.cn101070-20200207- 00126.
[5] Korsunsky G. Xenon[J]. Int Anesthesiol Clin, 2015,53(2):40-54. DOI: 10.1097/AIA.0000000000000049.
[6] Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton[J]. Science, 1951,113(2942):580-582. DOI: 10.1126/science.113.2942.580.
[7] Dandekar MP, Yin X, Peng T, et al. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction[J]. J Affect Disord, 2022,301:315-330. DOI: 10. 1016/j.jad.2022.01.025.
[8] Liang M, Ahmad F, Dickinson R. Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis[J]. Br J Anaesth, 2022,129(2):200-218. DOI: 10.1016/j.bja.2022.04.016.
[9] Ma D, Hossain M, Chow A, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia[J]. Ann Neurol, 2005,58(2):182-193. DOI: 10.1002/ana.20547.
[10] 王来栓, 程国强, 周文浩. 新生儿缺氧缺血性脑病后亚低温时代管理新思考[J].中华围产医学杂志,2020,23(3):172-176. DOI: 10.3760/cma.j.cn113903-20190805-00480.
Wang LS, Cheng GQ, Zhou WH.New thoughts on neonatal hypoxic-ischemic encephalopathy in post-cooling era[J].Chin J Perinat Med,2020,23(3):172-176. DOI: 10.3760/cma.j.cn113903-20190805-00480.
[11] Zhao CS, Li H, Wang Z, et al. Potential application value of xenon in stroke treatment[J]. Med Gas Res, 2018,8(3):116-120. DOI: 10.4103/2045-9912.241077.
[12] Franks NP, Dickinson R, de Sousa SL, et al. How does xenon produce anaesthesia?[J]. Nature, 1998,396(6709):324. DOI: 10.1038/24525.
[13] Sanejouand YH. At least three xenon binding sites in the glycine binding domain of the N-methyl D-aspartate receptor[J]. Arch Biochem Biophys, 2022,724:109265. DOI: 10.1016/j.abb.2022.109265.
[14] Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia[J]. Anesthesiology, 2010,112(3):614-622. DOI: 10.1097/ALN. 0b013e3181cea398.
[15] Armstrong SP, Banks PJ, McKitrick TJ, et al. Identification of two mutations (F758W and F758Y) in the N-methyl-D-aspartate receptor glycine-binding site that selectively prevent competitive inhibition by xenon without affecting glycine binding[J]. Anesthesiology, 2012,117(1):38-47. DOI: 10.1097/ALN.0b013e31825ada2e.
[16] Kubota H, Akaike H, Okamitsu N, et al. Xenon modulates the GABA and glutamate responses at genuine synaptic levels in rat spinal neurons[J]. Brain Res Bull, 2020,157:51-60. DOI: 10.1016/j.brainresbull.2020.01.016.
[17] Lavaur J, Lemaire M, Pype J, et al. Neuroprotective and neurorestorative potential of xenon[J]. Cell Death Dis, 2016,7(4):e2182. DOI: 10.1038/cddis.2016.86.
[18] Kotani N, Jang IS, Nakamura M, et al. Depression of synaptic N-methyl-D-Aspartate responses by xenon and nitrous oxide[J]. J Pharmacol Exp Ther, 2023,384(1):187-196. DOI: 10.1124/jpet.122.001346.
[19] Sabir H, Bishop S, Cohen N, et al. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain[J]. Anesthesiology, 2013,119(2):345-357. DOI: 10.1097/ALN. 0b013e318294934d.
[20] Shu Y, Patel SM, Pac-Soo C, et al. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia[J]. Anesthesiology, 2010,113(2):360-368. DOI: 10.1097/ALN. 0b013e3181d960d7.
[21] Ma D, Hossain M, Pettet GK, et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats[J]. J Cereb Blood Flow Metab, 2006,26(2):199-208. DOI: 10.1038/sj.jcbfm.9600184.
[22] Gill H, Pickering AE. The effects of xenon on sevoflurane anesthesia-induced acidosis and brain cell apoptosis in immature rats[J]. Paediatr Anaesth, 2021,31(3):372-374. DOI: 10.1111/pan.14076.
[23] Ma D, Lim T, Xu J, et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation[J]. J Am Soc Nephrol, 2009,20(4):713-720. DOI: 10.1681/ASN.2008070712.
[24] Sun L. F-box and WD repeat domain-containing 7 (FBXW7) mediates the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to affect hypoxic-ischemic brain damage in neonatal rats[J]. Bioengineered, 2022,13(1):560-572. DOI: 10.1080/21655979. 2021.2011635.
[25] Juul S. Neuroprotective role of erythropoietin in neonates[J]. J Matern Fetal Neonatal Med, 2012,25 Suppl 4:105-107. DOI: 10.3109/14767058.2012.715025.
[26] Chakkarapani E, Thoresen M, Liu X, et al. Xenon offers stable haemodynamics independent of induced hypothermia after hypoxia-ischaemia in newborn pigs[J]. Intensive Care Med, 2012,38(2):316-323. DOI: 10.1007/s00134-011-2442-7.
[27] Lavaur J, Lemaire M, Pype J, et al. Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress[J]. Cell Death Discov, 2016,2:16018. DOI: 10.1038/cddiscovery.2016.18.
[28] Phillips T, Menassa DA, Grant S, et al. The effects of Xenon gas inhalation on neuropathology in a placental-induced brain injury model in neonates: A pilot study[J]. Acta Paediatr, 2021,110(1):119-122. DOI: 10.1111/apa.15486.
[29] Campos-Pires R, Onggradito H, Ujvari E, et al. Xenon treatment after severe traumatic brain injury improves locomotor outcome, reduces acute neuronal loss and enhances early beneficial neuroinflammation: a randomized, blinded, controlled animal study[J]. Crit Care, 2020,24(1):667. DOI: 10.1186/s13054-020-03373-9.
[30] Weber NC, Toma O, Wolter JI, et al. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK[J]. Br J Pharmacol, 2005,144(1):123-132. DOI: 10.1038/sj.bjp.0706063.
[31] Zakharova NM, Tarahovsky YS, Komelina NP, et al. Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia[J]. J Therm Biol, 2021,98:102906. DOI: 10.1016/j.jtherbio.2021.102906.
[32] Cattano D, Valleggi S, Ma D, et al. Xenon induces transcription of ADNP in neonatal rat brain[J]. Neurosci Lett, 2008,440(3):217-221. DOI: 10.1016/j.neulet.2008.05.086.
[33] Yang T, Zhuang L, Rei Fidalgo AM, et al. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia[J]. PLoS One, 2012,7(5):e37020. DOI: 10.1371/journal.pone.0037020.
[34] Bantel C, Maze M, Trapp S. Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels[J]. Anesthesiology, 2009,110(5):986-995. DOI: 10.1097/ALN. 0b013e31819dadc7.
[35] Gruss M, Bushell TJ, Bright DP, et al. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane[J]. Mol Pharmacol, 2004,65(2):443-452. DOI: 10.1124/mol.65.2.443.
[36] Nazarov EI, Khlusov IA, Noda M. Homeostatic and endocrine responses as the basis for systemic therapy with medical gases: ozone, xenon and molecular hydrogen[J]. Med Gas Res, 2021,11(4):174-186. DOI: 10.4103/2045-9912.318863.
[37] Zhu W, Zhu J, Zhao S, et al. Xenon exerts neuroprotective effects on kainic acid-induced acute generalized seizures in rats via increased autophagy[J]. Front Cell Neurosci, 2020,14:582872. DOI: 10.3389/fncel.2020.582872.
[38] Zhang M, Cui Y, Zhu W, et al. Attenuation of the mutual elevation of iron accumulation and oxidative stress may contribute to the neuroprotective and anti-seizure effects of xenon in neonatal hypoxia-induced seizures[J]. Free Radic Biol Med, 2020,161:212-223. DOI: 10.1016/j.freeradbiomed. 2020.09.030.
[39] Hobbs C, Thoresen M, Tucker A, et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ ischemia[J]. Stroke, 2008,39(4):1307-1313. DOI: 10.1161/STROKEAHA.107.499822.
[40] Liu X, Dingley J, Scull-Brown E, et al. Adding 5 h delayed xenon to delayed hypothermia treatment improves long-term function in neonatal rats surviving to adulthood[J]. Pediatr Res, 2015,77(6):779-783. DOI: 10.1038/pr.2015.49.
[41] Martin JL, Ma D, Hossain M, et al. Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat[J]. Br J Anaesth, 2007,98(2):236-240. DOI: 10.1093/bja/ael340.
[42] Thoresen M, Hobbs CE, Wood T, et al. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia[J]. J Cereb Blood Flow Metab, 2009,29(4):707-714. DOI: 10.1038/jcbfm.2008.163.
[43] Sabir H, Walløe L, Dingley J, et al. Combined treatment of xenon and hypothermia in newborn rats--additive or synergistic effect?[J]. PLoS One, 2014,9(10):e109845. DOI: 10.1371/journal.pone.0109845.
[44] Dingley J, Tooley J, Liu X, et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study[J]. Pediatrics, 2014,133(5):809-818. DOI: 10.1542/peds.2013-0787.
[45] Azzopardi D, Robertson NJ, Bainbridge A, et al. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial[J]. Lancet Neurol, 2016,15(2):145-153. DOI: 10.1016/S1474- 4422(15)00347-6.
[46] Rzeplinski I, Sanloup C, Gilabert E, et al. Hadean isotopic fractionation of xenon retained in deep silicates[J]. Nature, 2022,606(7915):713-717. DOI: 10.1038/s41586-022-04710-4.